Tuesday, 7 November 2017

Pronosticar Moving Average Estacionalidad


Mover Forecasting media Introducción. Como se puede adivinar que estamos buscando a algunos de los métodos más primitivos a los pronósticos. Pero esperemos que estos son, al menos, una introducción a la pena algunos de los problemas informáticos relacionados con la aplicación de las previsiones en hojas de cálculo. En este sentido vamos a seguir iniciando al principio y empezar a trabajar con el movimiento promedio de las proyecciones. Mover promedio de las proyecciones. Todo el mundo está familiarizado con el movimiento promedio de las proyecciones con independencia de que ellos creen que son. Todos los estudiantes universitarios que hacen todo el tiempo. Piense en sus resultados de las pruebas en un curso en el que va a tener cuatro pruebas durante el semestre. Vamos a suponer que tienes un 85 en su primera prueba. ¿Qué le predecir a su segunda calificación de la prueba ¿Qué opinas tu maestro predeciría para su próxima calificación de la prueba ¿Qué opinas sus amigos podrían predecir para su próxima calificación de la prueba ¿Qué opinas sus padres podrían predecir para su próxima calificación de la prueba Independientemente de todo el blabbing que podría hacer a sus amigos y los padres, ellos y su profesor es muy probable que esperar a conseguir algo en la zona de los 85 que acaba de recibir. Pues bien, ahora vamos a suponer que a pesar de su auto-promoción a sus amigos, que sobre-estimación de sí mismo y figura que puede estudiar menos para la segunda prueba y así se obtiene un 73. Ahora lo están todos los interesados ​​y sin preocuparse de ir a anticipa que recibirá en su tercera prueba Hay dos enfoques muy probables para que puedan desarrollar una estimación independientemente de si van a compartirlo con ustedes. Pueden decirse a sí mismos, quotThis tipo está siempre soplando humo sobre su inteligencia. Hes va a conseguir otro 73 si hes suerte. Tal vez los padres tratan de ser más de apoyo y decir, quotWell, hasta ahora usted ha conseguido un 85 y un 73, por lo que tal vez debería figurar en conseguir alrededor de un (85 73) / 2 79. No sé, tal vez si lo hizo menos fiestas y no estábamos moviendo la comadreja por todo el lugar y si usted comenzó a hacer mucho más que estudia usted podría conseguir un mayor score. quot Ambas estimaciones están desplazándose hacia el promedio de las proyecciones. El primero consiste en utilizar solamente su puntuación más reciente para predecir el rendimiento futuro. Esto se llama un pronóstico promedio móvil utilizando un período de datos. El segundo es también un pronóstico promedio móvil pero utilizando dos períodos de datos. Vamos a suponer que todas estas personas que revienta en su gran mente han especie de que cabreado y decide hacer el bien en la tercera prueba para sus propias razones y poner una puntuación más alta frente a su quotalliesquot. Se toma la prueba y su puntuación es en realidad un Todo el mundo 89, incluyendo a sí mismo, está impresionado. Así que ahora usted tiene la prueba final del semestre por delante y como siempre se siente la necesidad de incitar a todos a hacer sus predicciones acerca de cómo hacer interminables en la última prueba. Bueno, esperamos que pueda ver el patrón. Ahora, con suerte se puede ver el patrón. ¿Cuál cree que es el más preciso del silbido mientras trabajamos. Ahora volvemos a nuestra nueva empresa de limpieza iniciado por su media hermana distanciada llamados silbido mientras trabajamos. Usted tiene algunos datos de ventas anteriores representados por la siguiente sección de una hoja de cálculo. Primero presentamos los datos para un periodo de tres moviéndose pronóstico promedio. La entrada de la celda C6 debe ser Ahora se puede copiar esta fórmula de celda a las otras celdas C7 a C11. Observe cómo los medios deja atrás los datos históricos más recientes, pero utiliza exactamente los tres períodos más recientes disponibles para cada predicción. También debe notar que nosotros no necesitamos realmente para hacer las predicciones para los últimos períodos con el fin de desarrollar nuestra predicción más reciente. Esto es definitivamente diferente del modelo de suavizado exponencial. He incluido el predictionsquot quotpast porque vamos a utilizar en la siguiente página Web para medir la validez de predicción. Ahora quiero dar a conocer los resultados análogos para un período de dos mover pronóstico promedio. La entrada de la celda C5 debe ser Ahora se puede copiar esta fórmula de celda a las otras células C6 a C11. Observe cómo ahora sólo se utilizan las dos piezas más recientes de datos históricos para cada predicción. Una vez más he incluido el predictionsquot quotpast con fines ilustrativos y para su posterior uso en la validación de previsión. Algunas otras cosas que son de importancia de aviso. Para un m-periodo en movimiento pronóstico promedio sólo el m valores de los datos más recientes se utilizan para hacer la predicción. es necesario nada más. Para un m-período de pronóstico promedio en movimiento, al hacer predictionsquot quotpast, observe que la primera predicción se produce en el periodo m 1. Ambas cuestiones será muy significativa cuando desarrollamos nuestro código. El desarrollo de la Función móvil media. Ahora tenemos que desarrollar el código para el pronóstico promedio móvil que se puede utilizar de manera más flexible. El código siguiente. Observe que las entradas son para el número de períodos que desea utilizar en el pronóstico y el conjunto de valores históricos. Se puede almacenar en cualquier libro que desee. Media móvil de función (históricos, NumberOfPeriods) As Single Declarar e inicializar las variables de artículo Dim Dim como variante Contador As Integer Dim Dim Acumulación As Single HistoricalSize como número entero Inicialización de variables de contador 1 0 Acumulación Determinación del tamaño de la matriz histórica HistoricalSize Historical. Count para el contador 1 Para NumberOfPeriods acumulando el número apropiado de la mayoría de los valores recientes observadas previamente Acumulación acumulación histórica (HistoricalSize - NumberOfPeriods contador) media móvil de acumulación / NumberOfPeriods el código será explicada en clase. Quiere posicionar la función de la hoja de cálculo para que el resultado del cálculo aparece donde debería gustan las series de tiempo following. A es una secuencia de observaciones de una variable aleatoria periódica. Ejemplos de ello son la demanda mensual de un producto, la matrícula de primer año anual de un departamento de la universidad y de los caudales diarios en un río. series de tiempo son importantes para la investigación de operaciones, ya que a menudo son el motor de los modelos de decisión. Un modelo de inventario requiere estimaciones de futuras demandas, una programación de curso y el modelo de dotación de personal para un departamento universitario requiere estimaciones de los flujos futuros de los estudiantes, y un modelo para proporcionar advertencias a la población en una cuenca hidrográfica requiere estimaciones de caudales de los ríos para el futuro inmediato. análisis de series temporales proporciona herramientas para seleccionar un modelo que describe la serie de tiempo y utilizar el modelo para predecir eventos futuros. Modelado de la serie de tiempo es un problema estadístico porque los datos observados se utiliza en los procedimientos de cálculo para estimar los coeficientes de un supuesto modelo. Modelos asumen que las observaciones varían al azar sobre un valor medio subyacente que es una función del tiempo. En estas páginas nos limitamos nuestra atención a la utilización de los datos históricos de series de tiempo para estimar un modelo dependiente del tiempo. Los métodos son apropiados para la previsión automática término, a falta de información de uso frecuente en las causas subyacentes de la variación en el tiempo no cambian notablemente en el tiempo. En la práctica, las predicciones obtenidas por estos métodos son modificadas posteriormente por los analistas humanos que incorporen información no está disponible a partir de los datos históricos. Nuestro propósito principal de esta sección es presentar las ecuaciones para los cuatro métodos de pronóstico utilizados en la predicción de complemento: media móvil, suavizado exponencial, regresión y suavizado exponencial doble. Estos son los llamados métodos de suavizado. Los métodos no considerados incluyen la predicción cualitativa, regresión múltiple, y los métodos autorregresivos (ARIMA). Los interesados ​​en la cobertura más extensa debe visitar el sitio Principios de predicción o leer uno de los varios libros excelentes sobre el tema. Se utilizó la predicción de libro. por Makridakis, Wheelwright y McGee, John Wiley amp; Sons, 1983. Para utilizar los ejemplos de libro de Excel, debe tener la predicción de complemento instalado. Elija el comando Volver a vincular para establecer los vínculos con el complemento. Esta página describe los modelos utilizados para la predicción simple y la notación utilizada para el análisis. Este método de pronóstico más simple es la previsión media móvil. El método simplemente promedios de los últimos m observaciones. Es útil para series de tiempo con una media que cambia lentamente. Este método considera todo el pasado en su pronóstico, pero pesa la experiencia reciente en mayor medida que menos reciente. Los cálculos son sencillos porque sólo la estimación del periodo anterior y los datos actuales determinan la nueva estimación. El método es útil para series de tiempo con una media que cambia lentamente. El método de promedio móvil no responde bien a una serie de tiempo que aumenta o disminuye con el tiempo. Aquí incluimos un término de tendencia lineal en el modelo. El método de regresión se aproxima al modelo mediante la construcción de una ecuación lineal que proporciona los ajuste de mínimos cuadrados a la última m observations. In practicar la media móvil proporcionará una buena estimación de la media de la serie de tiempo si la media es constante o lentamente cambiante. En el caso de una media constante, el mayor valor de m dará los mejores estimaciones de la media subyacente. Un periodo de observación más largo tendrá un promedio de los efectos de la variabilidad. El objeto de proporcionar un m más pequeña es permitir la previsión de responder a un cambio en el proceso subyacente. Para ilustrar esto, se propone un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra la serie de tiempo utilizado para la ilustración, junto con la demanda media de los que se generó la serie. La media comienza como una constante en 10. A partir de tiempo 21, se incrementa en una unidad en cada período hasta que se alcanza el valor de 20 en el momento 30. Entonces se hace constante de nuevo. Los datos se simula mediante la adición a la media, un ruido aleatorio de una distribución normal con media cero y desviación estándar 3. Los resultados de la simulación se han redondeado al entero más cercano. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, hay que recordar que en un momento dado, sólo se conocen los datos del pasado. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de la serie de tiempo en la siguiente figura. La figura muestra la estimación de la media móvil de la media en cada tiempo y no el pronóstico. Las previsiones cambiarían las curvas de media móvil hacia la derecha por puntos. Una conclusión es inmediatamente evidente a partir de la figura. Para las tres estimaciones de la media móvil va a la zaga de la tendencia lineal, con el retraso aumenta con m. El retraso es la distancia entre el modelo y la estimación de la dimensión de tiempo. Debido al retraso, el promedio móvil subestima las observaciones como la media va en aumento. El sesgo del estimador es la diferencia en un momento específico en el valor medio del modelo y el valor medio predicho por la media móvil. El sesgo cuando la media está aumentando es negativo. Para la media de la disminución, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. cuanto mayor sea la magnitud del retardo y el sesgo. Para una serie creciente de forma continua con una tendencia. los valores de retardo y el sesgo del estimador de la media se da en las siguientes ecuaciones. Las curvas ejemplo, no se ajustan a estas ecuaciones porque el modelo de ejemplo no está aumentando de forma continua, sino que comienza como una constante, se convierte en una tendencia y luego se vuelve constante de nuevo. También las curvas de ejemplo se ven afectados por el ruido. El pronóstico promedio móvil de periodos en el futuro está representado por desplazamiento de las curvas hacia la derecha. El retardo y el sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retardo y el sesgo de un períodos de pronóstico en el futuro si se compara con los parámetros del modelo. Una vez más, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos ser sorprendidos por este resultado. El estimador de la media móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Desde la serie en tiempo real raramente exactamente obedecer a los supuestos de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir a partir de la figura que la variabilidad del ruido tiene el efecto más grande para los pequeños m. La estimación es mucho más volátil para la media móvil de 5 de la media móvil de 20. Tenemos los deseos conflictivos para incrementar m para reducir el efecto de la variabilidad debido al ruido y lograr una reducción m para hacer el pronóstico más sensible a los cambios en la media. El error es la diferencia entre los datos reales y el valor pronosticado. Si la serie de tiempo es verdaderamente un valor constante el valor esperado del error es cero y la varianza del error se compone de un término que es una función de y un segundo término que es la varianza del ruido,. El primer término es la varianza de la media estimada con una muestra de m observaciones, asumiendo los datos proceden de una población con una media constante. Este término se minimiza haciendo m lo más grande posible. Una gran m hace que el pronóstico no responde a un cambio en la serie temporal subyacente. Para hacer la previsión sensible a los cambios, queremos m tan pequeño como sea posible (1), pero esto aumenta la varianza de error. previsión práctica requiere un valor intermedio. Pronóstico con Excel El pronóstico de complemento implementa las fórmulas de media móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de la muestra en la columna B. Las primeras 10 observaciones están indexados -9 a 0. En comparación con la tabla anterior, los índices de época se desplazan -10. Los primeros diez observaciones proporcionan los valores de inicio para la estimación y se utilizan para calcular el promedio móvil para el periodo 0. El (10) MA columna (C) muestra los promedios móviles calculados. El parámetro m de media móvil se encuentra en la celda C3. La Fore (1) columna (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un mayor número de los números en la columna de la Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el instante 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11,1. El error es entonces -5.1. La desviación estándar y media desviación media (MAD) se calculan en células E6 y E7 respectively. Definition de estacionalidad - Optimización del Inventario definición estacionalidad software Home Base de Conocimiento raquo raquo Aquí Por Joanns Vermorel, revisado por última vez septiembre de 2011 en las estadísticas, la demanda - o las ventas - de un producto determinado se dice que exhiben estacionalidad cuando el tiempo de la serie subyacente experimenta una variación cíclica predecible en función del tiempo dentro del año. La estacionalidad es uno de los patrones estadísticos utilizados con mayor frecuencia para mejorar la exactitud de los pronósticos de demanda. Ejemplo: la mayoría de los minoristas occidentales tienen pico de ventas en la temporada de Navidad. Ilustración de las series de tiempo de temporada El siguiente gráfico ilustra de 4 series de tiempo estacional (clic para ampliar). Series de tiempo se agregan a nivel semanal durante un período de 159 semanas (aproximadamente 3 años). Los datos representan los envíos semanales de 4 productos distintos desde el almacén de la gran distribución europea. El primer día del año (1 de enero) se marca con un marcador vertical gris. Los datos históricos aparece en rojo, mientras que la previsión Lokad se muestra en color morado. La estacionalidad se puede observar visualmente como una similitud de los patrones de un año para el siguiente uso de los marcadores grises como referencias. Modelo básico para la descomposición de temporada Sea Y (t) la demanda en el momento t. Nos descomponer la demanda Y (t) en dos componentes: S (t) una función estrictamente cíclico y Z (t) el complemento no estacional. Esto da: Y (t) S (t) Z (t) en la que S (t 1 año) S (t) Si tal función S (t) puede ser estimada, entonces el proceso de pronóstico va típicamente en tres etapas: Calcular el tiempo-serie desestacionalizada como Z (t) Y (t) / S (t). Producir el pronóstico sobre la serie temporal Z (t). posiblemente a través de la media móvil. Vuelva a aplicar los índices de estacionalidad para el pronóstico después. Volver al problema inicial de la estimación de los índices estacionales S (t). suponiendo que no hay tendencia (entre otros), S (t) se puede estimar con: S (t) PROMEDIO (Y (t-1) / MA (t-1) Y (t-2) / MA (t-2 ) y (t-3) / MA (T-3)) donde y (t-1) es el atajo para y (t -. 1 año) y MA (t) de la media móvil de 1 año de y (t) . El enfoque propone en esta sección es ingenuo. pero puede ser implementado fácilmente en Excel. Muchos de los modelos estadísticos se pueden encontrar en la literatura para hacer frente a la estacionalidad con métodos más complicados. Ej: Box-Jenkins, ARMA, ARIMA, Holt-Winters. Desafíos en la estimación de los índices de estacionalidad El modelo estacionalidad ilustran aquí arriba es un enfoque bastante ingenua que trabajan para las series de tiempo de temporada larga y suave. Sin embargo, hay varias dificultades prácticas en la estimación de la estacionalidad: de series de tiempo son cortos. La vida útil de la mayoría de los bienes de consumo no supera los 3 o 4 años. Como resultado, para un producto dado, el historial de ventas ofrece en promedio muy pocos puntos en el pasado para estimar cada índice temporal (es decir, los valores de S (t) durante el transcurso del año, cf. la sección anterior) . Series de tiempo son ruidosas. las fluctuaciones del mercado aleatorios impactan las ventas, y hacer que la estacionalidad más difíciles de aislar. Múltiples estacionalidades están involucrados. Al mirar las ventas a nivel de tienda, la estacionalidad del producto en sí es típicamente enreda con la estacionalidad de la tienda. Otros patrones tales como tendencia o producto del ciclo de vida también influyen en las series de tiempo. la introducción de diversos tipo de sesgo en la estimación. Un simple - aunque la mano de obra intensiva - método para resolver esos problemas consiste en crear manualmente perfiles de estacionalidad de los agregados de productos conocidos para tener el mismo comportamiento estacional. La vida útil del producto agregado es típicamente mucho más larga que la vida útil de los productos individuales, lo que mitiga los estimación issues. Quasi-estacionalidad Hay muchos patrones que suceden una vez al año, pero no siempre en la misma fecha. En Lokad, llamamos a esos patrones cuasi-estacionales. Por ejemplo, Día de la Madre (que cae en diferentes fechas dependiendo del año y también varía según los países) y otros días festivos como el Ramadán, Pascua y Jánuca (que caen en diferentes fechas dependiendo del año), son cuasi-estacional. Esos eventos cuasi-temporada caen fuera del alcance de los modelos de previsión cíclicas clásicos que asumen que el período del ciclo es estrictamente constante. Con el fin de hacer frente a esos eventos cuasi-estacional, se requiere una lógica más compleja cuasi-cíclico. Lokads Gotcha En nuestra experiencia, los efectos de la estacionalidad de la gran mayoría de las actividades humanas. En particular, en las series de tiempo que representa la venta de bienes de consumo (alimentos y no alimentos por igual), un factor de temporada es casi siempre presente. Sin embargo, es frecuente que, debido a la cantidad de ruido del mercado, la calidad de la estimación de los índices estacionales termina demasiado bajo para ser de uso práctico para refinar los pronósticos. La tecnología de pronóstico de Lokad se encarga de forma nativa tanto la estacionalidad y cuasi-estacionalidad, por lo que no tiene que decir acerca de ellos Lokad, su cuidado ya atendidos. Con el fin de superar los problemas planteados por la profundidad histórica limitado disponible para la mayoría de series de tiempo en el comercio minorista o de fabricación, Lokad utiliza múltiples análisis de series temporales y la estacionalidad no es evaluada en un solo producto pero mirando a muchos productos. De esta manera, se reduce el ruido en nuestra estimación de la estacionalidad, sino también introducimos la estacionalidad en los pronósticos, incluso cuando los productos se han vendido por menos de un año. Obtener las previsiones de ventas optimizadas con nuestra tecnología de pronóstico de inventario. Lokad se especializa en la optimización del inventario a través de previsión de la demanda. la gestión de la estacionalidad - y mucho más - son características nativas de nuestro motor de previsión. temas de cadena de suministro de pronósticos aplicación topicsSpreadsheet de ajuste estacional y de suavizado exponencial Es sencillo para llevar a cabo el ajuste estacional y ajustar los modelos de suavizado exponencial usando Excel. Las imágenes de la pantalla y los gráficos siguientes se toman de una hoja de cálculo que se ha creado para ilustrar el ajuste estacional multiplicativo y suavizado exponencial lineal de los siguientes datos de ventas trimestrales de Outboard Marine: Para obtener una copia de la hoja de cálculo en sí, haga clic aquí. La versión de suavizado exponencial lineal que será utilizado aquí para los propósitos de demostración es la versión Brown8217s, simplemente debido a que puede ser implementado con una sola columna de fórmulas y sólo hay una constante de alisamiento para optimizar. Por lo general, es mejor utilizar la versión Holt8217s que tiene constantes de uniformización separados para nivel y la tendencia. El proceso de predicción se desarrolla de la siguiente manera: (i) en primer lugar los datos están ajustados estacionalmente (ii) a continuación, las previsiones se generan para los datos ajustados estacionalmente a través de suavizado exponencial lineal y (iii) finalmente las previsiones ajustadas por estacionalidad son quotreseasonalizedquot para obtener predicciones para la serie original . El proceso de ajuste de temporada se lleva a cabo en columnas D a través de G. El primer paso en el ajuste estacional es calcular un centrado de media móvil (realizado aquí en la columna D). Esto se puede hacer tomando el promedio de dos medias de un año de ancho que se compensan por un período de uno respecto al otro. (Una combinación de dos compensado promedios más que hace falta un único promedio para los propósitos de centrado cuando el número de estaciones es par.) El siguiente paso es calcular la relación de mover --i. e promedio. los datos originales dividido por el promedio móvil en cada período - que se realiza aquí en la columna E. (Esto también se llama el componente quottrend-cyclequot del patrón, en la medida de tendencia y ciclo económico efectos podrían ser considerados para ser todo lo queda después de un promedio sobre el conjunto de un año por valor de los datos. por supuesto, los cambios mes a mes en el que no se deben a la estacionalidad se pudo determinar por muchos otros factores, pero el promedio de 12 meses suaviza sobre ellos en gran medida.) la estimado índice de estacionalidad para cada estación se calcula con el promedio en primer lugar todos los coeficientes para esa estación en particular, que se realiza en las células G3-G6 usando una fórmula AVERAGEIF. Las proporciones medias se reajustarán a continuación, de modo que suman exactamente 100 veces el número de períodos en una temporada, o 400 en este caso, que se realiza en células H3-H6. A continuación, en la columna F, fórmulas BUSCARV se utilizan para insertar el valor del índice de temporada apropiada en cada fila de la tabla de datos, de acuerdo con el trimestre del año que representa. El CENTRADO media móvil y los datos ajustados estacionalmente terminar pareciéndose a esto: Tenga en cuenta que la media móvil normalmente se parece a una versión más suave de la serie ajustada estacionalmente, y es más corta en ambos extremos. Otra hoja de cálculo en el mismo archivo de Excel muestra la aplicación del modelo de suavizado exponencial lineal a los datos desestacionalizados, comenzando en la columna G. Un valor para la constante de alisamiento (alfa) se introduce por encima de la columna de previsión (en este caso, en la celda H9) y por conveniencia se le asigna el nombre de rango quotAlpha. quot (el nombre se asigna mediante el comando quotInsert / nombre / Createquot.) el modelo de LES se inicializa mediante el establecimiento de los dos primeros pronósticos igual al primer valor real de la serie ajustada estacionalmente. La fórmula usada aquí para la previsión del LES es la ecuación de una sola forma recursiva del modelo Brown8217s: Esta fórmula se introduce en la celda correspondiente al tercer período (en este caso, H15 celular) y se copia hacia abajo desde allí. Observe que el pronóstico LES para el período actual se refiere a las dos observaciones anteriores y los dos errores de predicción anteriores, así como el valor de alfa. Por lo tanto, la fórmula de predicción en la fila 15 se refiere únicamente a los datos que estaban disponibles en la fila 14 y anteriores. (Por supuesto, si deseamos utilizar simples en lugar de suavizado exponencial lineal, podríamos sustituir la fórmula SES aquí en su lugar. También podríamos utilizar Holt8217s en lugar de modelo Brown8217s LES, lo que requeriría dos columnas más de las fórmulas para calcular el nivel y la tendencia que se utilizan en el pronóstico.) los errores se calculan de la siguiente columna (en este caso, la columna J) restando los pronósticos de los valores reales. La raíz error cuadrado medio se calcula como la raíz cuadrada de la varianza de los errores más el cuadrado de la media. (Esto se deduce de la identidad matemática:. MSE VARIACIÓN (errores) (Promedio (errores)) 2) En el cálculo de la media y la varianza de los errores en esta fórmula, los dos primeros períodos se excluyen porque el modelo no comienza realmente la previsión hasta el tercer período (fila 15 en la hoja de cálculo). El valor óptimo de la alfa se puede encontrar ya sea cambiando manualmente alfa hasta que se encuentre el RMSE mínimo, o bien puede utilizar el quotSolverquot para realizar una minimización exacta. El valor de alfa que el solucionador encuentra se muestra aquí (alpha0.471). Por lo general, es una buena idea para trazar los errores del modelo (en unidades transformadas) y también para calcular y trazar sus autocorrelaciones en los retardos de hasta un año. Aquí es un gráfico de series temporales de los errores (desestacionalizados): Las autocorrelaciones de error se calculan utilizando la función COEF. DE. CORREL () para calcular las correlaciones de los errores con ellos mismos con un retraso de uno o más períodos - detalles se muestran en el modelo de hoja de cálculo . Aquí se presenta un gráfico de las autocorrelaciones de los errores en los primeros cinco rezagos: Las autocorrelaciones en los retardos del 1 al 3 son muy cercanos a cero, pero el aumento en el retardo 4 (cuyo valor es 0,35) es ligeramente molesto - que sugiere que la proceso de ajuste estacional no ha tenido un éxito completo. Sin embargo, en realidad es sólo marginalmente significativo. 95 bandas de significación para comprobar que es autocorrelaciones son significativamente diferentes de cero son aproximadamente más-o-menos 2 / SQRT (n-k), donde n es el tamaño de la muestra y K es el retraso. Aquí n es 38 y k varía de 1 a 5, por lo que la raíz cuadrada de n-k-menos-es de alrededor de 6 para todos ellos, y por lo tanto los límites para probar la significación estadística de las desviaciones de cero son más o menos plus - o-menos 2/6, o 0.33. Si varía el valor de alfa a mano en este modelo de Excel, se puede observar el efecto sobre la serie de tiempo y parcelas de autocorrelación de los errores, así como en el error de raíz media cuadrada, que se ilustra a continuación. En la parte inferior de la hoja de cálculo, la fórmula de predicción se quotbootstrappedquot en el futuro simplemente sustituyendo las previsiones para los valores actuales en el punto donde los datos reales se agota - es decir. donde quotthe futurequot comienza. (En otras palabras, en cada celda donde se produciría un valor de datos futuro, se inserta una referencia de celda que apunta a la previsión hecha para ese período.) Todas las otras fórmulas simplemente se copian desde arriba: Observe que los errores de las predicciones de el futuro están todos calcula a ser cero. Esto no significa que los errores reales serán cero, sino que simplemente refleja el hecho de que para efectos de predicción estamos suponiendo que los datos futuros serán iguales a las previsiones en promedio. Las previsiones LES resultantes para los datos ajustados estacionalmente este aspecto: Con este valor particular de alfa, que es óptima para las predicciones de un período hacia delante, la tendencia proyectada es ligeramente hacia arriba, lo que refleja la tendencia local que se observó durante los últimos 2 años más o menos. Para otros valores de alfa, se podría obtener una proyección tendencia muy diferente. Por lo general, es una buena idea para ver lo que ocurre con la proyección de tendencias a largo plazo cuando alfa es variada, ya que el valor que es mejor para la predicción a corto plazo no será necesariamente el mejor valor para predecir el futuro más lejano. Por ejemplo, aquí está el resultado que se obtiene si el valor de alfa se ajusta manualmente a 0,25: La tendencia proyectada a largo plazo es ahora más negativa que positiva con un valor menor de alfa, el modelo está poniendo más peso sobre los datos más antiguos en su estimación del nivel y la tendencia actual, y sus previsiones a largo plazo reflejan la tendencia a la baja observada en los últimos 5 años en lugar de la tendencia al alza más reciente. Este gráfico también ilustra claramente cómo el modelo con un valor menor de alfa es más lento para responder a quotturning pointsquot en los datos y por lo tanto tiende a hacer que un error del mismo signo durante muchos períodos consecutivos. Sus errores de pronóstico 1-paso-a continuación son más grandes que el promedio de los obtenidos antes (RMSE de 34,4 en lugar de 27,4) y fuertemente autocorrelated positivamente. El retraso de 1 autocorrelación de 0,56 supera con creces el valor de 0,33 calculado anteriormente para una desviación estadísticamente significativa de cero. Como alternativa al arranque por el valor de la alfa con el fin de introducir una mayor conservadurismo en previsiones a largo plazo, un factor quottrend dampeningquot a veces se añade al modelo con el fin de hacer que la tendencia proyectada a aplanar después de unos períodos. El último paso en la construcción del modelo de predicción es quotreasonalizequot las previsiones LES multiplicándolos por los índices estacionales apropiados. Por lo tanto, las previsiones reseasonalized en la columna I son simplemente el producto de los índices estacionales en la columna F y las previsiones LES desestacionalizados en la columna H. Es relativamente fácil de calcular los intervalos de confianza de las predicciones de un solo paso-a continuación realizadas por este modelo: en primer lugar calcular el RMSE (error de raíz media cuadrada, que es simplemente la raíz cuadrada del MSE) y luego calcular un intervalo de confianza para el pronóstico ajustados estacionalmente sumando y restando dos veces el RMSE. (En general un intervalo de confianza del 95 para obtener la previsión de un período hacia delante es más o menos igual a la previsión del punto más-o-menos-dos veces la desviación estándar estimada de los errores de predicción, suponiendo que la distribución de error es aproximadamente normal y el tamaño de la muestra es lo suficientemente grande, digamos, 20 o más. Aquí, el RMSE en lugar de la desviación estándar de la muestra de los errores es la mejor estimación de la desviación estándar de los futuros errores de pronóstico, ya que toma el sesgo, así variaciones aleatorias en cuenta.) los límites de confianza para el pronóstico ajustado estacionalmente se reseasonalized a continuación. junto con el pronóstico, multiplicándolos por los índices estacionales apropiados. En este caso, el RMSE es igual a 27,4 y la previsión ajustada estacionalmente para el primer período futuro (dic-93) es 273,2. por lo que el intervalo de confianza del 95 ajustada estacionalmente es 273,2-227,4 218,4 a 328,0 273.2227.4. La multiplicación de estos límites de los diciembre índice estacional de 68.61. obtenemos límites de confianza inferior y superior de 149,8 y 225,0 alrededor de la previsión punto Dic-93 de 187,4. los límites de confianza de las predicciones más de un período que se avecina en general, se ensanchan a medida que aumenta horizonte de pronóstico, debido a la incertidumbre sobre el nivel y la tendencia, así como los factores estacionales, pero es difícil de calcular en general mediante métodos analíticos. (La forma más adecuada para calcular los límites de confianza para el pronóstico del LES es mediante el uso de la teoría ARIMA, pero la incertidumbre en los índices estacionales es otro tema). Si desea un intervalo de confianza realista para una previsión de más de un período por delante, teniendo todas las fuentes de de error en cuenta, lo mejor es utilizar métodos empíricos: por ejemplo, para obtener un intervalo de confianza para un 2-paso por delante pronosticado, podría crear otra columna en la hoja de cálculo para calcular un pronóstico 2-paso adelante para cada periodo ( por bootstrapping la previsión de un paso por delante). A continuación, calcular el RMSE de los errores de pronóstico 2-paso adelante y utilizar esto como la base para un intervalo de confianza de 2 pasos de la ventaja.

No comments:

Post a Comment